2.1

3.1

3.2

Multivariable control systems

Anurag
anuragg.in@gmail.com
WWWw.anuragg.in

November 12, 2018

State space equation [1]

#(t) = Az(t) + Bu(t) (1.1)
y = Cu(t)

Controllability [2]

Controllable subspace

T
Wy = / A BB'eMdt (2.1)
0

u(t) = B'eM" Ty = BeATOW 1y — e ag); (2.2)

Observervability [2]

Preliminaries for minimal observal design

Let B& D = X and P be the projection operator on D along B, then (PA|PAB) =
PX =D

If (A, B) is controllable then 3 V. F st. B®V = X and (A+ BF)V C V and
o[(A+ BF)|V] = A where A is any set of symmetric dim(X) — dim(B) eigenvalues.
To find the unknowns use o[(PA + PBFy)|D] = A, V = (P + BF,)D and BF =
(BFyP —1+ P)A

Minimal observer design

Obtain the dual matrices A’, C’

Find D' st. '@ D' = X'

Obtain projection matrix P on D" along C’

Find Fy s.t. PA' + PC'Fy has desired eigenvalues A
Obtain A’-invariant subspace V' = (P + C'Fy)D’
C'F=(C'FyP—1+P)A



4

4.1

Obtain K using K = —F”

. Find T” using insertion map V"’ satisfying the relation (A — KC)'V' = V'T"

. Desired minimal observer which gives Vz(t) s.t. Cz(t) ® Va(t) = z(t) is given by

2(t) =Tz(t) + VKy(t) + VBu(t)

Observer for bad states if ker(C) D X,

. Find A: X/X, — X/X,

Find C using CPX/Xg =C

Design full observer using A, C

Observer for bad states if ker(C) 2 X,

. Find § = ker(C) N &,
 Find 4: X/S = X/S

Find C using CPX/S =C

. Design full observer using A, C

Minimal detector problem

. Find ker(C)

Take IC D ker(C)

Obtain D matrix s.t. ker(DC) =K

Find largest unobservable space V in K which is ker(DC; DCA; ...; DC A1)

Check if required state to be observed is contained in X' /V, if not repeat with step 2.

Find A, C using AP = PA and CP = DC. (Note: It is better to find the matrices in
reduced subspace X' /V and then perform next step)

Design observer using C_'|X/V, /_1|X/V

(A, B) invariant subspaces [2]

Notation

Family of (A, B) invariant subspace in X is denoted by Z(A, B; X).

4.2

Algorithm to find (A, B)-invariant subspace inside X i.e. V*

Vo = X (4.1)
V,=XNA'V,_1 +B) .
V'u = V}L-‘rl — V* = V,LL (43)



5 Disturbance decoupling prolem [2]

Theorem 5.1. DDP is solvable iff im(S) C V* where V* = sup Z(A, B, ker(C))

6 Output stabilization [2]

Theorem 6.1. Output stabilization is solvable iff X,(A) C (A|B)+V* where V* = sup Z(A, B; ker(C))

7 Controllability subspace [2]

Theorem 7.1. R is a controllability subspace iff R = (A+ BF|BNR)

Theorem 7.2. IfV = (A+ BF|VNB) is a c.s. thenY = (A+ BF|[VNB) VF, € F(V)
Lemma 7.1. If V € Z(A, B; X) Fy, F» € F(V) then B(F, — F))Y C BNV

Theorem 7.3. Let Ay = (A+ BF)|V and By = (VN B)|V. Then, (Ag, Bo) is controllable.

7.1 Largest controllability space in R € Z(A, B; X)
1. Let R € I(A, B; X)
2. Generate S, =S, = 8,41 using S; = (AS;,_1 + B) N R with Sy =0

7.2 Spectrum assignability of R € Z(A, B; X)

Let R € Z(A, B; X). Generate S, which is the largest controllability subspace contained in
R. Then, we can only freely assign eigenvalues corresponding to subspace S, C R

7.3 Disturbance decoupling problem with stability

Theorem 7.4. Assuming (A, B) is controllable, DDP with stability is solvable iff im(S) C V;

Al * *
where V; = R*+ Az, where Ay is good eigenvectors of Ao|[V*/R* where A= | 0 Ay, 0

0 0 Ay
in basis of R*, Agg, Agp.

8 Equivalent classes of systems

8.1 Controllability indices and controllability index [2, p. 121]
8.2 Canonical form [2, p. 121]

8.3 Possible c.s. and exactly one c.s. [2, p. 124]

Theorem 8.1. Let (A, B) be controllable, with controllability indices ky > ... > ky,. Then
the possible dimensions of these nonzero c.s. of (A, B) are given by the list

Ko
km—lv km—l + ]-7 R km—l + km

ki k41, ki ket 4k



There is exactly one c.s of dimension r # 0 if (i) r =n (ii) for some j € 1,2,...,m — 1,

kj>7n:kj+l+"'+km (85)

9 Restricted regulator problem [2]

(Necessary condition) Xy(A) NN C ker(D) (9.1)

Xp(A)NN C V;V € Z(A, B; ker(D) (9.2)

AVNN)CVY (9.3)

Xp(A) C (AIB) +V (9.4)

FN =0 (9.5)

9.1 Finding maximal element of {V € Z(A, B; ker(D)) s.t. A(WNN) C
v}

VW =yyaV, (9.6)

Vo = sup{V:V C ker(D)NN, AV C V} (9.7)

Vi=sup{V:VCWNA Y (B+V,+V)} (9.8)

where W is a suitable complement of N'N ker(D) in ker(D)
Corrolary 9.1. If AN Nker(D)) C ker(D) then RRP is solvable iff conditions for RRP

are satisfied.

10 Extended regulator problem |[2]

Theorem 10.1. ERP s solvable iff

Xy(A)NN C ker(D) (10.1)
Xy(A) C (A|B) + V* (10.2)

Finding feedback matrix

Vo = A — invariant subspace contained in V* NN (
VNN =Voe W (
V=V d V&V, (
X=Vo® V1DV D Vs (10.6
dim(X,) = dim(Vy) (
(
(

E:X,— X, st ker(E)NV, =0, ker(E) C V& Vs 10.8
Vi = (I + E)V* 10.9
F(V}) > F. and ker(F,) C N (10.10
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