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a b s t r a c t

Magnetic properties of grain-oriented materials are affected by hysteresis, anisotropy and dynamic ef-

fects. The attempts to describe dynamic hysteresis loops are usually limited to the rolling direction (RD).

On the other hand, modelling of magnetic properties for the transverse direction (TD) is important for

numerical analysis of core-joints and corner regions in transformers. For this direction, hysteresis loops

reveal complex shapes particularly for dynamic magnetization conditions. This paper presents a com-

prehensive approach for modelling of dynamic hysteresis loops in RD and TD. This work uses the

magnetic viscosity-based approach, which is able to describe irregular widening of dynamic loops. The

loss separation scheme is also considered for both principal directions. Variations of loss components

with frequency for both directions are discussed. The computed dynamic loops in RD and TD are in a

close agreement with experimental ones.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The magnetic properties of grain-oriented (GO) materials used

in transformer laminations are affected by a number of phenom-

ena, such as hysteresis, anisotropy, and eddy currents. The me-

chanisms underlying the physics of magnetization process are well

described in the literature [1–4], yet the macroscopic behaviour of

the material is still difficult to model. On the other hand, the de-

velopment of an accurate model for predicting the gross behaviour

of these materials is an important issue for the engineering com-

munity in order to design efficient electromagnetic devices [5–7].

Favourable crystallographic properties in the rolling direction (RD)

of these materials make them ideal for power transformers and

large rotating electrical machines. The properties along the di-

rections other than RD are needed for more realistic field com-

putation at joints/teeth regions [8]. For such an analysis, a precise

vector hysteresis model is needed [7].

A number of significant attempts have been reported in the

literature to characterize the hysteresis loops for the rolling and

transverse (TD) directions [9–11]. One possible approach, based on

some concepts from chemical/thermo-dynamical theories [9], has

been presented in [10]. The latter paper has proven its usefulness

for the description of quasi-static RD and TD magnetization curves.

Another promising description which is based on the

Jiles–Atherton (JA) approach, proposed recently in [11], has also

been used for hysteresis loops in two principal directions. This

model can also be used further for modelling of hysteresis loops in

arbitrary directions, similarly to the description considered in [12],

which uses the correlations of intrinsic RD and TD properties. The

JA model can be a suitable candidate for hysteresis modelling due

to its relative simplicity and ease in numerical implementation

[13]. The original JA model is based on some physical premises

concerning irreversible domain wall translation through pinning

sites in isotropic materials [2]. Hence most of the existing dynamic

JA models are focused on these materials [14–17]. Moreover, such

model extensions are commonly based on Bertotti’s approach [1],

which under certain circumstances may fail to predict arbitrary

loop shapes and loss vs. frequency dependencies [18,19]. In GO

steels, the dynamic effects related to the existence of classical and

excess field strengths [1] may be significant, which makes the

analysis more difficult. The dynamic hysteresis loops of these

materials may exhibit anomalous shapes [19]. The problem of

modelling of dynamic hysteresis in TD is rarely addressed in the

literature; this paper is aimed to fill the gap.

This paper presents a modelling approach for dynamic hyster-

esis loops in RD and TD using a viscosity-based extension of the

modified quasi-static JA model which considers the crystal-

lographic features of GO materials in order to predict accurately

RD and TD static hysteresis loops [11]. The paper also elaborates

loss separation using a three-component approach. A generalized

approach based on the magnetic viscosity is used for modeling of

excess losses in RD and TD. The approach offers flexibility to
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handle an arbitrary loss versus frequency dependence and to

control anomalous loop shapes in both principal directions [20,21].

A magnetic viscosity based modified dynamic JA model has been

proposed recently in [21]. Encouraging modelling results have

been obtained for RD dynamic loops.

In the present paper, a comprehensive modeling approach for

dynamic loops in RD and TD is described using the model. The

approach is consistent with the classical theory of loss separation

as the value of classical eddy current loss is kept constant dis-

regarding the applied field direction. The hysteresis and excess

losses vary with direction, and these loss components can be

computed using the modified quasi-static JA model and the

magnetic viscosity based approach, respectively. The arbitrary

frequency-loss dependence and anomalies in loop shapes are at-

tributed to the excess loss, which can be handled using the viscous

approach.

2. Magnetic properties in the rolling and transverse directions

2.1. Measurement of dynamic hysteresis loops and losses

Measurements are carried out on two samples (Hi–B material;

grade – 27M-OH) which are cut at angles of 0° and 90° with re-

spect to RD. The thickness of samples is 0.27 mm, the length is

200 mm, and the width is 29.5 mm. The measurements are per-

formed using a standard single sheet tester (Model: BROCKHAUS

MPG 200D). Measurements of hysteresis loops and losses are

carried out over a frequency range of 1–200 Hz. It is assumed that

the effects of classical eddy currents and excess losses on the

hysteresis loop can be neglected at 1 Hz. Hence the obtained

hysteresis loops and losses at 1 Hz in are assumed to be static

quantities. The peak flux densities are set to 1.7 T and 1.3 T for RD

and TD, respectively. Measured hysteresis loops of the material for

RD and TD at different frequencies are shown in Fig. 1(a) and (b). A

lower value is chosen for TD since the curve saturates earlier in

this direction as observed in Fig. 1(b).

As evident from the figures, GO steels show highly steep,

gooseneck, and narrow waist hysteresis loops in RD and complex

shaped curves in TD. Moreover, an irregular widening (as shown

by line-L in the figures) in dynamic loops can also be observed for

both directions in these materials. The irregular widening of dy-

namic loops can be attributed to the excess losses.

2.2. Corelosses

The separation of total core loss into three components viz.,

hysteretic, classic, and excess terms is a common practice for loss

description in thin ferromagnetic laminations [22,23]. The total

energy losses can be represented as the sum of the static hyster-

esis loss, the classical loss, and the excess loss using a thin sheet

model (TSM). The loss equation for GO laminations can be written

as [23]

W W W W , (1)tot hyst class exc= + +

where Wtot is the total energy loss, Whyst is the static hysteresis

loss, and Wclass and Wexc are the classical and excess losses, re-

spectively. The hysteresis loss, Whyst, was measured in a quasi-

static field condition at 1 Hz as the dynamic effects are negligible

at this frequency. The classical losses can be calculated using the

following equation [1]:

⎛

⎝
⎜

⎞

⎠
⎟W k

dB

dt
dB k

d
where

12
.

(2)
class e e

2

∫
ρ

= =

Here d and ρ are the sheet thickness and resistivity. The classical

losses can be calculated using Eq. (2). The parameter ke (0.013 (m/

Ω)) can also be calculated directly and it remains fixed in different

directions (RD and TD) at all frequencies since it depends solely on

thickness (d¼0.27 mm) and resistivity (ρ¼4.6�10�7
Ωm) of the

material. The excess energy loss, Wexc, is computed as the

difference between Wtot and the sum of Whyst and Wclass. These

loss components are given in Table 1 for RD and TD for maximum

induction of 1.1 T at 50 Hz.

The classical losses are calculated using Eq. (2) derived under

the assumption of homogeneous material (devoid of domain

structure) and hence it may be assumed that these losses do not

vary with the direction of applied field [3]. Only two loss com-

ponents (hysteresis and excess loss) will change with the direc-

tion. The difference in static hysteresis losses in two directions can

be explained in terms of the different proportion of 180° and 90°

domain walls in TD [3,12]. On the contrary, the excess losses de-

pend on domain wall spacing and types of domain walls (90° and

180° walls) [3,24]. The domain wall spacing varies with crystalline

orientation, and hence this anisotropy of the excess loss is not

directly related to magnetocrystalline anisotropy [25]. Higher ex-

cess losses in TD can also be attributed to 90° wall processes and

nucleation [26].

Fig. 1. Measured dynamic loops (Hi–B material, 27M-OH) (a) RD (b) TD.
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3. Modeling of RD and TD static loops

GO laminations display strong anisotropic behaviour due to

arrangement of their crystallites in the preferred RD orientation

[3] which can be obtained according to the Goss orientation i.e.,

crystallites with their [001] easy axis close to RD and their (110)

plane almost along the lamination surface.

The original JA description simulates the magnetic hysteresis

using reversible and irreversible domain wall motions under the

assumption of isotropic nature of materials [2]. Significant at-

tempts have been made in the literature for inclusion of anisotropy

and texture effects in the JA model [27–29]. A modified JA model,

which is able to predict narrow-waist RD loops and complex-

shaped TD loops, has been proposed recently in [11]. The model

assumes that GO Fe–Si materials maintain as a whole cubic sym-

metry with axes of individual crystals along the global cubic axes

[30]. The crystalline structure and texture of GO materials is in-

cluded in the model by an appropriate energy termwhich depends

on the angle between the magnetization direction and RD, and it

gives the highest energy level at 55° (approximately) from RD. The

anhysteretic magnetization has been modified by introducing an

additional (anisotropic) energy term. The anhysteretic magneti-

zation (Man) can be expressed as a function of the magnetized

direction [27]

M M
E k T d

E k T d

exp ( / ) sin cos

exp ( / ) sin (3)
an s

B

B

0

0

∫

∫

θ θ θ

θ θ
=

π

π

where Ms is the saturation magnetization, kBT is the thermal en-

ergy of the system, and θ is the angle between the applied field

and the direction of magnetic moments [11]. In the presence of

anisotropy, the energy equation becomes,

E M H M E( ) (4)s an0μ α= − + +

where M and H are the total magnetization and the applied

magnetic field, respectively, whereas μ0 is the magnetic perme-

ability of free space. The magneto-crystalline anisotropy energy

(Ean) of a single cubic crystal can be expressed [1] as

( )E K K K (5)an 0 1 1
2

2
2

2
2

3
2

3
2

1
2

2 1
2

2
2

3
2α α α α α α α α α= + + + +

where α1, α2, and α3 are the direction cosines of the magnetization

vector with respect to the three crystal axes. K0, K1, and K2 are

anisotropy constants. Only the second term of Eq. (5) is taken into

consideration for anisotropy energy description which gives rea-

sonably accurate results [11]. The direction cosines of the magne-

tization vector can be expressed in polar coordinates

( ( ) ( )1/ 2 sin , 1/ 2 sin , and cos1 2 3α φ α φ α φ= = = ; where, φ is

the angle between the magnetization direction and RD) as given in

[31].

The modification of the original description may be attributed a

physical interpretation. The extended Eq. (4) considers the con-

tributions from 180° and 90° domain walls to the magnetization

process. The hysteretic behavior can be achieved by using an offset

from the “anhysteretic” magnetization associated with Eq. (3). The

offset represents the irreversible domain wall motion with pinning

effects. The resulting differential susceptibility can be expressed

as [2]

⎛

⎝
⎜

⎞

⎠
⎟
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dH

M H M H

k M H M H
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dM

dH
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dH

( ) ( )
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an irr

an irr

an

0δ μ α
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−

− −
+ −

where, δ is a directional parameter with the value of þ1 for dH/

dt40 and �1 for dH/dto0, whereas Mirr is the irreversible

magnetization. The model can also be expressed in its inverse

formwhich is particularly useful in numerical implementation and

typical measurement systems [21] as

⎡
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⎢
⎢
⎢

⎤
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The modified model has six parameters (Ms, a, k, c, α, K1). As

pointed out in [11], a physical interpretation may be attributed to

them. A hybrid optimization technique described in [32] is used

for determining the model parameters from the measured quasi-

static major loops for both directions. These optimized parameter

values are given in Table 2.

The computed hysteresis loops with the obtained parameters

are in close agreement with the measured curves as evident from

Fig. 2. Maximum values of mean squared error do not exceed 5%

(the highest error is obtained at knee region on the TD loop) for

loops in the two principal directions.

4. Modeling of dynamic loops

The total energy losses can be represented as the sum of the

static hysteresis loss, the classical loss, and the excess loss using a

thin sheet model (TSM) [13]. The static hysteresis losses are the

measured losses in a DC condition or at a very low frequency. The

loss component has different values in different directions as can

be observed in Table 1. The classical loss depends on the thickness

and resistivity of the material and hence this loss will remain the

same for all directions [3]. Therefore the parameter ke remains the

same for RD and TD and is calculated directly using Eq. (2). The

field associated with classical eddy currents can be rewritten from

this equation as

⎛

⎝
⎜

⎞

⎠
⎟H k

dB

dt (8)
class e

2

=

On the other hand, the excess losses are calculated by sub-

tracting the sum of the static hysteresis and classical eddy losses

from the total losses. This component of the dynamic loss changes

with respect to direction as discussed in the previous section. The

excess losses can be represented using the magnetic viscosity

approach as [33]

⎡

⎣
⎢

⎤

⎦
⎥W

r B

dB

dt

dB

dt
dt

1

( ) (9)
excess

cycle

v1/

∮=

Table 1

Core loss components in RD and TD.

Loss (J/m3) RD TD

Whyst 28.67 123.43

Wclass 15.44 15.44

Wexc 17.43 155.31

Table 2

Static model parameters for RD and TD.

Parameters RD TD

Ms (A/m) 1.43�106 1.06�106

a (A/m) 68 80

k (A/m) 18 60

α 4.90�10-5 4.90�10-5

c 0.44 0.44

K1(J/m
3) 3.10�102 7.20�102
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where v is a parameter which controls the model dynamics and

the function r(B) is known as dynamic magnetic resistivity. The

corresponding excess field strength is given as

H
r B

dB

dt

1

( ) (10)
exc

v1/

=

The function r(B) may be written in the form [20]

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟r B R

B

B
( ) 1

(11)
m

m

2

2
= −

The function can control loop shapes and the exponent v can be

used to predict the arbitrary frequency dependence of the excess

losses [20]. In order to avoid possible singularity in Eq. (8) [21], the

Bm term in the denominator of Eq. (10) has been multiplied by 1.01,

yielding

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟r B R

B

B
( ) 1

(1.01 ) (12)
m

m

2

2
= −

×

The viscosity-based approach offers flexibility in terms of two

adjustable parameters (the value of exponent v and the form of

function r(B)). In the present paper the approach which assumes a

fixed value of exponent v¼2 (which corresponds to Bertotti’s

f 1/2dependence for the excess loss) is considered. On the other

hand, the value of Rm coefficient in the function r(B) is adjusted in
different parts of the loop in order to match the modeled and

measured curves [33]. Different values of the coefficient in dif-

ferent induction intervals may have their source in varying con-

tributions of different phenomena affecting the physics of mag-

netization process (as shown in Fig. 3) and their interaction with

eddy currents generated in the conductive material.

The procedure for calculating dynamic hysteresis loops using

the field separation approach combined with the static modified

JA model is given in Fig. 4.

5. Results and discussions

The following relationships have been used in calculations of

dynamic hysteresis loops depicted in Figs. 5 and 6. For RD, ex-

citation frequencies are in the range of 50–200 Hz and the max-

imum flux density value is set to 1.7 T.

⎧

⎨

⎪
⎪
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δ
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For TD at maximum flux density value of 1.3 T.

case a) excitation frequencies: 50 and 100 Hz
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B
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case b) excitation frequencies: 150 and 200 Hz

Fig. 2. Measured and computed static major loops of RD and TD.

Fig. 3. Different mechanisms of magnetization process along the hysteresis loop.
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where Bδ denotes the product Bδ; 1δ = ± is the sign of the deri-

vative B td /d [33].

The results of modelling are presented in Figs. 5 and 6 for RD

and TD, respectively. It should be noticed that for RD, a single

definition for function r B( )δ suffices for the description in a wide
range of excitation frequencies. The maximum mean squared error

between the measured and the modeled loops is 5.2%. This dis-

crepancy is obtained for f¼100 Hz (case depicted in Fig. 5b).

For the TD loops, it was found that better modelling results

could be obtained using two separate definition sets of r B( )δ for

lower ( f 50; 100∈ Hz) and higher ( f 150; 200∈ Hz) excitation

frequencies. However the different r B( )δ values are evident only in

the intermediate induction rangeB 1 T; 0 T)∈ ⟨ −δ . The difference
may be attributed to the complicated mutual interactions between

180° and 90° domain walls and eddy currents in that induction

range. In this direction, the domain wall process is accomplished

by rearrangement of domain walls into 90° and 180° domain walls,

which leads to variations in domain wall spacings [3,26,34]. Ac-

cording to some researcher [34], the suggested dependency on

frequency of the from f1/2 may also be related to the rearrange-

ment of domain structure.

The maximum mean squared error between the measured and

the modelled loops does not exceed 6.5%; this value is obtained for

f¼50 Hz (the case shown in Fig. 6a)).

6. Conclusions

This paper presents a comprehensive approach for accurate

description of dynamic loops in RD and TD of GO laminations. It

also discusses a loss separation scheme using a three-component

approach in the two principal directions. The hysteresis and excess

components of the core losses vary with the direction of the ap-

plied field. The variation in static hysteresis losses is qualitatively

explained in terms of changes in the domain configuration for RD/

TD directions and it results from different roles played by the 180°

and 90° domain walls during the magnetization process. This leads

to highly steep and narrow waist RD loops and complex shaped TD

Fig. 4. Chart illustrating the computation of dynamic loops.
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loops. A modified JA model is used to describe static hysteresis

loops in RD and TD. The modification is aimed to take into account

the contributions of both kinds of domain walls in the definition of

the “anhysteretic” function which is the backbone of the

description.

In order to take into account the complex shapes of dynamic

hysteresis loops the magnetic viscosity approach has been adopted

to describe the excess loss component in the three-term loss se-

paration scheme. This approach may precisely characterize the

arbitrary loss–frequency relationship and anomalous shapes of

Fig. 5. Computed and measured dynamic loops in RD (dashed line – measurements, solid line – modelling).

Fig. 6. Computed and measured dynamic loops in RD (dashed line – measurements, solid line – modelling).
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dynamic loops in RD and TD. The exponent v is used to control the

arbitrary loss–frequency behavior whereas the anomalies in loop

shapes can be handled by a modification of the function r(B). The

function is adjusted along the loop in order to predict correct loop

shapes for both directions.

The proposed description has been validated using measured

curves obtained under dynamic magnetization conditions with

excitation frequencies in the range: f 50; 200∈ Hz. The model

may be useful for the designers of magnetic circuits in electric

machines. Its combination with a vector hysteresis model can

make it possible to carry out a numerical analysis of core-joints

and corner-regions in transformers. The issue shall be the subject

of forthcoming research.
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